Quest Analytics Nodes

We strongly encourage all Quest users to review the summary of post-maintenance changes as these changes could immediately impact your workflow after the Quest March 2025 downtime.

Navigate To Other Quest Pages

Table of Contents

 

The Quest Analytics Nodes allow users to run Python (via Jupyter notebooks), RStudio, and SAS Studio in their web browser, backed by Quest file systems and nodes with more computational resources than available on a personal computer. They are available to all Quest users with an active allocation.

For more general information about Quest Analytics nodes, please click here.

Using RStudio on the Quest Analytics Nodes

The Quest Analytics Nodes allow users with active Quest allocations to use RStudio from a web browser.

Note: you cannot submit jobs to the Quest job scheduling system using the Quest Analytics Nodes.

Connecting

Users must already have a Quest account and an active Quest allocation.

Connections to the Quest Analytics Nodes are limited to the Northwestern network. If you are connecting from off-campus, you must use the Northwestern VPN.

Using any browser, connect to: https://rstudio.quest.northwestern.edu

Sign in with your NetID and password.

Transferring and Accessing Files

All of the Quest file systems are accessible from the Quest Analytics Nodes. You can transfer files using the methods to transfer files to Quest more generally.

You can also transfer files smaller than 500MB using the Files tab in RStudio. There is an upload button that will allow you to select files from your computer to transfer.

When you connect to RStudio, you will initially be in your home directory. This is /home/<netid> on Quest.

To access a project directory, click on the button with three small dots on the right in the Files tab. Then enter the full path to your project folder (ex. /projects/<allocationID>).

 

To transfer files larger than 500MB to Quest, please use SFTP or another transfer method.

Installing Packages

Users may install packages using the Packages tab in RStudio Server or the install.packages function in R. Some packages that require code to be compiled may need to be installed by connecting to a Quest login node and following the tips below. Please see Installing and Managing R Packages on Quest and  Troubleshooting Installing R Packages on Quest and Quest Analytics for more information

R Packages on the Quest Analytics nodes

For more information regarding installing, using, and troubleshooting R packages on Quest, please see the page R and RStudio on Quest.

 

Using SAS Studio on the Quest Analytics Nodes

How to connect to, transfer files to, and use SAS Studio on the Quest Analytics Nodes.

The Quest Analytics Nodes allow users with active Quest allocations to use SAS Studio from a web browser. 
Note: you cannot submit jobs to the Quest job scheduling system using the Quest Analytics Nodes.

Connecting

Users must already have a Quest account and an active Quest allocation.

Connections to the Quest Analytics Nodes are limited to the Northwestern network. If you are connecting from off-campus, you must use the Northwestern VPN.

Using any browser, connect to: https://sasstudio.quest.northwestern.edu

Sign in with your NetID and password.

Sessions time out after one hour of inactivity.

Transferring and Accessing Files

All of the Quest file systems are accessible from the Quest Analytics Nodes. You can transfer files using the methods to transfer files to Quest more generally.

You can also transfer files smaller than 500MB using the SAS Studio interface. See the upload icon in the Server Files and Folders window in the upper left of the session.

 



When you first connect to SAS Studio, you will be in your Quest home directory (/home/<netid>). To access your projects directory (/projects/<allocationID>), create a new folder shortcut. To do this, click on the icon in the upper left in the Server Files and Folder window that looks like a rectangle with an * on it.



From the Menu, choose Folder Shortcut. Then give the shortcut a name and enter the path to your projects folder. For example, if your allocation ID was p200000


When you click Save, the folder is now accessible from the Folder Shortcuts menu in Server Files and Folders:


You can access any of your files on Quest in your scripts by specifying the full path to the file.

To transfer files larger than 500MB to Quest, please use SFTP or another transfer method.

 

Using Jupyter Notebook or Lab on the Quest Analytics Nodes

The Quest Analytics nodes allow users with active Quest allocations to launch Jupyter notebooks from a web browser. 

Note: you cannot submit jobs to the Quest job scheduling system using the Quest Analytics nodes.

Connecting

Users must already have a Quest account and an active Quest allocation.

Connections to the Quest Analytics Nodes are limited to the Northwestern network. If you are connecting from off-campus, you must use the Northwestern VPN.

Using any browser, connect to:  https://jupyterhub.quest.northwestern.edu and sign in with your NetID and password.

Note: notebook servers are automatically killed after 18 hours of inactivity.

Accessing JupyterLab Instead of Notebook

The default behavior for JupyterHub will be to launch a Jupyter Notebook instance. The URL for the notebook will end as follows:

/home/<netid>/tree?

To instead run JupyterLab after logging into JupyterHub, you can change the URL to

/home/<netid>/lab

which will trigger the creation of a JupyterLab instance.

Transferring and Accessing Files

All of the Quest filesystem is accessible from the Quest Analytics nodes. You can transfer files using the methods to transfer files to Quest more generally.

You can also transfer files smaller than 500MB using the the Jupyter web interface. There is an Upload button that will allow you to select files from your computer to transfer.

Jupyter upload button

When you connect to Jupyter, you will initially be in your home directory. This is /home/<netid> on Quest. You cannot navigate to a directory "outside" of your home directory (e.g., to a project directory) via the Jupyter interface. However, you can SSH to Quest and use the terminal to create a symlink to a project directory within your home directory, allowing you to navigate there. For example:

ln -s /projects/<projectID> ~/<projectID>

This will create a symlink <projectID> in your home directory, and when you click on it in the Jupyter interface you will be taken to the project directory itself.

To transfer files larger than 500MB to Quest, please use SFTP or another transfer method.

Environments and Packages

The default kernel/environment available in Jupyter on the Analytics Nodes contains the packages listed under System Details below. 

If you need other packages (or versions of packages) installed, you can create a conda environment and add it to your list of available environments using the commands below (Note you must SSH or use FastX to access Quest and type these commands in the terminal):

Create a iPython Kernel

module purge all
module load python-miniconda3/4.12.0
conda create --name jupyter-kernel-py38 -c conda-forge python=3.8 numpy pandas matplotlib ipykernel --yes
source activate jupyter-kernel-py38
python -m ipykernel install --user --name jupyter-kernel-py38 --display-name "Python (jupyter-kernel-py38)"

The last command adds the environment to your list of available environments in Jupyter, and once you have done this it will be available for you under the "New" menu.

Create a R Kernel

module purge all
module load python-miniconda3/4.12.0
conda create -c conda-forge --name r-kernel r-irkernel r=4.1 jupyterlab
source activate r-kernel
R -e "IRkernel::installspec(name = 'ir41', displayname = 'R4.1')"

The last command adds the environment to your list of available environments in Jupyter, and once you have done this it will be available for you under the "New" menu.

In addition, to list all of the available kernels that you have installed, you can run

module load anaconda3/2018.12
jupyter kernelspec list

For more information about managing environments with conda, see Using Python on Quest.

 

System Details

RStudio Server is version 2024.12. R is version 4.4.0. The Analytics Nodes are limited to running a single version of R for all users.

SAS is version 9.4 with maintenance release 4 applied (STAT module is version 14.2).

Information about the packages available in the default environment for Jupyter can be found below in .yml format. 

Filename: analytics_jupyter_default_environment.yml
name: /software/qanalytics/jupyterhub/env_downtime_2023
channels:
  - conda-forge
dependencies:
  - _libgcc_mutex=0.1=conda_forge
  - _openmp_mutex=4.5=2_gnu
  - alembic=1.11.3=pyhd8ed1ab_0
  - alsa-lib=1.2.9=hd590300_0
  - anyio=4.0.0=pyhd8ed1ab_0
  - aom=3.5.0=h27087fc_0
  - argon2-cffi=23.1.0=pyhd8ed1ab_0
  - argon2-cffi-bindings=21.2.0=py311hd4cff14_3
  - arrow=1.2.3=pyhd8ed1ab_0
  - asttokens=2.2.1=pyhd8ed1ab_0
  - async-lru=2.0.4=pyhd8ed1ab_0
  - async_generator=1.10=py_0
  - attr=2.5.1=h166bdaf_1
  - attrs=23.1.0=pyh71513ae_1
  - babel=2.12.1=pyhd8ed1ab_1
  - backcall=0.2.0=pyh9f0ad1d_0
  - backports=1.0=pyhd8ed1ab_3
  - backports.functools_lru_cache=1.6.5=pyhd8ed1ab_0
  - beautifulsoup4=4.12.2=pyha770c72_0
  - bleach=6.0.0=pyhd8ed1ab_0
  - blinker=1.6.2=pyhd8ed1ab_0
  - blosc=1.21.5=h0f2a231_0
  - brotli=1.1.0=hd590300_0
  - brotli-bin=1.1.0=hd590300_0
  - brotli-python=1.1.0=py311hb755f60_0
  - brunsli=0.1=h9c3ff4c_0
  - bzip2=1.0.8=h7f98852_4
  - c-ares=1.19.1=hd590300_0
  - c-blosc2=2.10.2=hb4ffafa_0
  - ca-certificates=2023.7.22=hbcca054_0
  - cached-property=1.5.2=hd8ed1ab_1
  - cached_property=1.5.2=pyha770c72_1
  - cairo=1.16.0=hbbf8b49_1016
  - certifi=2023.7.22=pyhd8ed1ab_0
  - certipy=0.1.3=py_0
  - cffi=1.15.1=py311h409f033_3
  - charls=2.4.2=h59595ed_0
  - charset-normalizer=3.2.0=pyhd8ed1ab_0
  - comm=0.1.4=pyhd8ed1ab_0
  - configurable-http-proxy=4.5.6=h92b4e83_1
  - contourpy=1.1.0=py311h9547e67_0
  - cryptography=41.0.3=py311h63ff55d_0
  - cycler=0.11.0=pyhd8ed1ab_0
  - dav1d=1.2.1=hd590300_0
  - dbus=1.13.6=h5008d03_3
  - debugpy=1.6.8=py311hb755f60_0
  - decorator=5.1.1=pyhd8ed1ab_0
  - defusedxml=0.7.1=pyhd8ed1ab_0
  - entrypoints=0.4=pyhd8ed1ab_0
  - exceptiongroup=1.1.3=pyhd8ed1ab_0
  - executing=1.2.0=pyhd8ed1ab_0
  - expat=2.5.0=hcb278e6_1
  - font-ttf-dejavu-sans-mono=2.37=hab24e00_0
  - font-ttf-inconsolata=3.000=h77eed37_0
  - font-ttf-source-code-pro=2.038=h77eed37_0
  - font-ttf-ubuntu=0.83=hab24e00_0
  - fontconfig=2.14.2=h14ed4e7_0
  - fonts-conda-ecosystem=1=0
  - fonts-conda-forge=1=0
  - fonttools=4.42.1=py311h459d7ec_0
  - fqdn=1.5.1=pyhd8ed1ab_0
  - freetype=2.12.1=hca18f0e_1
  - gettext=0.21.1=h27087fc_0
  - giflib=5.2.1=h0b41bf4_3
  - glib=2.76.4=hfc55251_0
  - glib-tools=2.76.4=hfc55251_0
  - gmp=6.2.1=h58526e2_0
  - graphite2=1.3.13=h58526e2_1001
  - greenlet=2.0.2=py311hb755f60_1
  - gst-plugins-base=1.22.5=hf7dbed1_0
  - gstreamer=1.22.5=h98fc4e7_0
  - harfbuzz=7.3.0=hdb3a94d_0
  - icu=72.1=hcb278e6_0
  - idna=3.4=pyhd8ed1ab_0
  - imagecodecs=2023.9.4=py311h35c80e7_0
  - imageio=2.31.1=pyh24c5eb1_0
  - importlib-metadata=6.8.0=pyha770c72_0
  - importlib_metadata=6.8.0=hd8ed1ab_0
  - importlib_resources=6.0.1=pyhd8ed1ab_0
  - ipykernel=6.25.2=pyh2140261_0
  - ipython=8.15.0=pyh0d859eb_0
  - ipython_genutils=0.2.0=py_1
  - isoduration=20.11.0=pyhd8ed1ab_0
  - jedi=0.19.0=pyhd8ed1ab_0
  - jinja2=3.1.2=pyhd8ed1ab_1
  - joblib=1.3.2=pyhd8ed1ab_0
  - json5=0.9.14=pyhd8ed1ab_0
  - jsonpointer=2.0=py_0
  - jsonschema=4.19.0=pyhd8ed1ab_1
  - jsonschema-specifications=2023.7.1=pyhd8ed1ab_0
  - jsonschema-with-format-nongpl=4.19.0=pyhd8ed1ab_1
  - jupyter-lsp=2.2.0=pyhd8ed1ab_0
  - jupyter_client=7.4.9=pyhd8ed1ab_0
  - jupyter_core=5.3.1=py311h38be061_0
  - jupyter_events=0.7.0=pyhd8ed1ab_2
  - jupyter_server=2.7.3=pyhd8ed1ab_0
  - jupyter_server_terminals=0.4.4=pyhd8ed1ab_1
  - jupyter_telemetry=0.1.0=pyhd8ed1ab_1
  - jupyterhub=4.0.2=pyh31011fe_0
  - jupyterhub-base=4.0.2=pyh31011fe_0
  - jupyterlab=4.0.5=pyhd8ed1ab_0
  - jupyterlab_pygments=0.2.2=pyhd8ed1ab_0
  - jupyterlab_server=2.24.0=pyhd8ed1ab_0
  - jxrlib=1.1=h7f98852_2
  - keyutils=1.6.1=h166bdaf_0
  - kiwisolver=1.4.5=py311h9547e67_0
  - krb5=1.21.2=h659d440_0
  - lame=3.100=h166bdaf_1003
  - lazy_loader=0.3=pyhd8ed1ab_0
  - lcms2=2.15=haa2dc70_1
  - ld_impl_linux-64=2.40=h41732ed_0
  - lerc=4.0.0=h27087fc_0
  - libaec=1.0.6=hcb278e6_1
  - libavif16=1.0.1=h014f275_1
  - libblas=3.9.0=18_linux64_openblas
  - libbrotlicommon=1.1.0=hd590300_0
  - libbrotlidec=1.1.0=hd590300_0
  - libbrotlienc=1.1.0=hd590300_0
  - libcap=2.69=h0f662aa_0
  - libcblas=3.9.0=18_linux64_openblas
  - libclang=15.0.7=default_h7634d5b_3
  - libclang13=15.0.7=default_h9986a30_3
  - libcups=2.3.3=h4637d8d_4
  - libcurl=8.2.1=hca28451_0
  - libdeflate=1.18=h0b41bf4_0
  - libedit=3.1.20191231=he28a2e2_2
  - libev=4.33=h516909a_1
  - libevent=2.1.12=hf998b51_1
  - libexpat=2.5.0=hcb278e6_1
  - libffi=3.4.2=h7f98852_5
  - libflac=1.4.3=h59595ed_0
  - libgcc-ng=13.1.0=he5830b7_0
  - libgcrypt=1.10.1=h166bdaf_0
  - libgfortran-ng=13.1.0=h69a702a_0
  - libgfortran5=13.1.0=h15d22d2_0
  - libglib=2.76.4=hebfc3b9_0
  - libgomp=13.1.0=he5830b7_0
  - libgpg-error=1.47=h71f35ed_0
  - libiconv=1.17=h166bdaf_0
  - libjpeg-turbo=2.1.5.1=h0b41bf4_0
  - liblapack=3.9.0=18_linux64_openblas
  - libllvm15=15.0.7=h5cf9203_3
  - libnghttp2=1.52.0=h61bc06f_0
  - libnsl=2.0.0=h7f98852_0
  - libogg=1.3.4=h7f98852_1
  - libopenblas=0.3.24=pthreads_h413a1c8_0
  - libopus=1.3.1=h7f98852_1
  - libpng=1.6.39=h753d276_0
  - libpq=15.4=hfc447b1_0
  - libsndfile=1.2.2=hbc2eb40_0
  - libsodium=1.0.18=h36c2ea0_1
  - libsqlite=3.43.0=h2797004_0
  - libssh2=1.11.0=h0841786_0
  - libstdcxx-ng=13.1.0=hfd8a6a1_0
  - libsystemd0=254=h3516f8a_0
  - libtiff=4.5.1=h8b53f26_1
  - libuuid=2.38.1=h0b41bf4_0
  - libuv=1.44.2=hd590300_1
  - libvorbis=1.3.7=h9c3ff4c_0
  - libwebp-base=1.3.1=hd590300_0
  - libxcb=1.15=h0b41bf4_0
  - libxkbcommon=1.5.0=h5d7e998_3
  - libxml2=2.11.5=h0d562d8_0
  - libzlib=1.2.13=hd590300_5
  - libzopfli=1.0.3=h9c3ff4c_0
  - lz4-c=1.9.4=hcb278e6_0
  - mako=1.2.4=pyhd8ed1ab_0
  - markupsafe=2.1.3=py311h459d7ec_0
  - matplotlib=3.7.2=py311h38be061_0
  - matplotlib-base=3.7.2=py311h54ef318_0
  - matplotlib-inline=0.1.6=pyhd8ed1ab_0
  - mistune=3.0.1=pyhd8ed1ab_0
  - mpg123=1.31.3=hcb278e6_0
  - munkres=1.1.4=pyh9f0ad1d_0
  - mysql-common=8.0.33=hf1915f5_3
  - mysql-libs=8.0.33=hca2cd23_3
  - nbclassic=1.0.0=pyhb4ecaf3_1
  - nbclient=0.8.0=pyhd8ed1ab_0
  - nbconvert=7.8.0=pyhd8ed1ab_0
  - nbconvert-core=7.8.0=pyhd8ed1ab_0
  - nbconvert-pandoc=7.8.0=pyhd8ed1ab_0
  - nbformat=5.9.2=pyhd8ed1ab_0
  - ncurses=6.4=hcb278e6_0
  - nest-asyncio=1.5.6=pyhd8ed1ab_0
  - networkx=3.1=pyhd8ed1ab_0
  - nodejs=20.5.1=hf52ce11_0
  - notebook=6.5.5=pyha770c72_0
  - notebook-shim=0.2.3=pyhd8ed1ab_0
  - nspr=4.35=h27087fc_0
  - nss=3.92=h1d7d5a4_0
  - numpy=1.25.2=py311h64a7726_0
  - oauthlib=3.2.2=pyhd8ed1ab_0
  - openjpeg=2.5.0=hfec8fc6_2
  - openssl=3.1.2=hd590300_0
  - overrides=7.4.0=pyhd8ed1ab_0
  - packaging=23.1=pyhd8ed1ab_0
  - pamela=1.1.0=pyh1a96a4e_0
  - pandas=2.1.0=py311h320fe9a_0
  - pandoc=3.1.3=h32600fe_0
  - pandocfilters=1.5.0=pyhd8ed1ab_0
  - parso=0.8.3=pyhd8ed1ab_0
  - pcre2=10.40=hc3806b6_0
  - pexpect=4.8.0=pyh1a96a4e_2
  - pickleshare=0.7.5=py_1003
  - pillow=10.0.0=py311h0b84326_0
  - pip=23.2.1=pyhd8ed1ab_0
  - pixman=0.40.0=h36c2ea0_0
  - pkgutil-resolve-name=1.3.10=pyhd8ed1ab_0
  - platformdirs=3.10.0=pyhd8ed1ab_0
  - ply=3.11=py_1
  - pooch=1.7.0=pyha770c72_3
  - prometheus_client=0.17.1=pyhd8ed1ab_0
  - prompt-toolkit=3.0.39=pyha770c72_0
  - prompt_toolkit=3.0.39=hd8ed1ab_0
  - psutil=5.9.5=py311h2582759_0
  - pthread-stubs=0.4=h36c2ea0_1001
  - ptyprocess=0.7.0=pyhd3deb0d_0
  - pulseaudio-client=16.1=hb77b528_5
  - pure_eval=0.2.2=pyhd8ed1ab_0
  - pycparser=2.21=pyhd8ed1ab_0
  - pycurl=7.45.1=py311hae980a4_3
  - pygments=2.16.1=pyhd8ed1ab_0
  - pyjwt=2.8.0=pyhd8ed1ab_0
  - pyopenssl=23.2.0=pyhd8ed1ab_1
  - pyparsing=3.0.9=pyhd8ed1ab_0
  - pyqt=5.15.9=py311hf0fb5b6_4
  - pyqt5-sip=12.12.2=py311hb755f60_4
  - pysocks=1.7.1=pyha2e5f31_6
  - python=3.11.5=hab00c5b_0_cpython
  - python-dateutil=2.8.2=pyhd8ed1ab_0
  - python-fastjsonschema=2.18.0=pyhd8ed1ab_0
  - python-json-logger=2.0.7=pyhd8ed1ab_0
  - python-tzdata=2023.3=pyhd8ed1ab_0
  - python_abi=3.11=3_cp311
  - pytz=2023.3.post1=pyhd8ed1ab_0
  - pywavelets=1.4.1=py311hcb2cf0a_0
  - pyyaml=6.0.1=py311h459d7ec_0
  - pyzmq=24.0.1=py311ha4b6469_1
  - qt-main=5.15.8=h7fe3ca9_15
  - rav1e=0.6.6=he8a937b_2
  - readline=8.2=h8228510_1
  - referencing=0.30.2=pyhd8ed1ab_0
  - requests=2.31.0=pyhd8ed1ab_0
  - rfc3339-validator=0.1.4=pyhd8ed1ab_0
  - rfc3986-validator=0.1.1=pyh9f0ad1d_0
  - rpds-py=0.10.2=py311h46250e7_0
  - ruamel.yaml=0.17.32=py311h459d7ec_0
  - ruamel.yaml.clib=0.2.7=py311h2582759_1
  - scikit-image=0.21.0=py311hb755f60_0
  - scikit-learn=1.3.0=py311hc009520_0
  - scipy=1.11.2=py311h64a7726_0
  - send2trash=1.8.2=pyh41d4057_0
  - setuptools=68.1.2=pyhd8ed1ab_0
  - sip=6.7.11=py311hb755f60_0
  - six=1.16.0=pyh6c4a22f_0
  - snappy=1.1.10=h9fff704_0
  - sniffio=1.3.0=pyhd8ed1ab_0
  - soupsieve=2.5=pyhd8ed1ab_1
  - sqlalchemy=2.0.20=py311h459d7ec_0
  - stack_data=0.6.2=pyhd8ed1ab_0
  - svt-av1=1.7.0=h59595ed_0
  - terminado=0.17.1=pyh41d4057_0
  - threadpoolctl=3.2.0=pyha21a80b_0
  - tifffile=2023.8.30=pyhd8ed1ab_0
  - tinycss2=1.2.1=pyhd8ed1ab_0
  - tk=8.6.12=h27826a3_0
  - toml=0.10.2=pyhd8ed1ab_0
  - tomli=2.0.1=pyhd8ed1ab_0
  - tornado=6.3.3=py311h459d7ec_0
  - traitlets=5.9.0=pyhd8ed1ab_0
  - typing-extensions=4.7.1=hd8ed1ab_0
  - typing_extensions=4.7.1=pyha770c72_0
  - typing_utils=0.1.0=pyhd8ed1ab_0
  - tzdata=2023c=h71feb2d_0
  - uri-template=1.3.0=pyhd8ed1ab_0
  - urllib3=2.0.4=pyhd8ed1ab_0
  - wcwidth=0.2.6=pyhd8ed1ab_0
  - webcolors=1.13=pyhd8ed1ab_0
  - webencodings=0.5.1=py_1
  - websocket-client=1.6.2=pyhd8ed1ab_0
  - wheel=0.41.2=pyhd8ed1ab_0
  - xcb-util=0.4.0=hd590300_1
  - xcb-util-image=0.4.0=h8ee46fc_1
  - xcb-util-keysyms=0.4.0=h8ee46fc_1
  - xcb-util-renderutil=0.3.9=hd590300_1
  - xcb-util-wm=0.4.1=h8ee46fc_1
  - xkeyboard-config=2.39=hd590300_0
  - xorg-kbproto=1.0.7=h7f98852_1002
  - xorg-libice=1.1.1=hd590300_0
  - xorg-libsm=1.2.4=h7391055_0
  - xorg-libx11=1.8.6=h8ee46fc_0
  - xorg-libxau=1.0.11=hd590300_0
  - xorg-libxdmcp=1.1.3=h7f98852_0
  - xorg-libxext=1.3.4=h0b41bf4_2
  - xorg-libxrender=0.9.11=hd590300_0
  - xorg-renderproto=0.11.1=h7f98852_1002
  - xorg-xextproto=7.3.0=h0b41bf4_1003
  - xorg-xf86vidmodeproto=2.3.1=h7f98852_1002
  - xorg-xproto=7.0.31=h7f98852_1007
  - xz=5.2.6=h166bdaf_0
  - yaml=0.2.5=h7f98852_2
  - zeromq=4.3.4=h9c3ff4c_1
  - zfp=1.0.0=h27087fc_3
  - zipp=3.16.2=pyhd8ed1ab_0
  - zlib=1.2.13=hd590300_5
  - zlib-ng=2.0.7=h0b41bf4_0
  - zstd=1.5.5=hfc55251_0
prefix: /software/qanalytics/jupyterhub/env_downtime_2023

The Quest Analytics nodes are shared by many researchers. Please be aware of your memory use when analyzing large data sets. Users utilizing a large amount of memory, especially those using over 60GB of RAM, may be asked to move their analysis to other systems. Multicore and parallel processes should not be run on the Analytics nodes. Users needing to run computationally intensive jobs should schedule interactive or batch jobs on Quest instead of using the Analytics nodes. Please contact Research Computing at quest-help@northwestern.edu with questions about memory use or analyzing large data sets.

Issues or Problems with the Quest Analytics nodes

To report issues or problems with the Quest Analytics nodes, please email quest-help@northwestern.edu with information on which service you were using, the error you received or problem you encountered, and what you were doing prior to the problem occurring. Please note that you were using the Quest Analytics nodes.

 

Was this helpful?
0 reviews